设为首页收藏本站在线充值

中原工学院论坛

 找回密码
 立即注册

扫一扫,访问微社区

QQ登录

只需一步,快速开始

查看: 345|回复: 0

[IT前沿] 江苏北人:机器视觉系统设计的五大要素,你都知道吗?

[复制链接]

768

主题

768

帖子

694

积分

中级会员

Rank: 9Rank: 9Rank: 9Rank: 9Rank: 9

积分
694
发表于 2019-6-26 19:49:20 | 显示全部楼层 |阅读模式

马上注册,享用更多功能!灵感论坛,推动创造力的社区。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x

机器视觉在中国的发展已有十余个年头。过去十年是机器视觉产业在中国市场发展最快的十年,经过一定时期的普及与推广,机器视觉已逐渐为广大客户所熟知,而且其应用范围也逐渐开始扩大,大规模的应用领域由起初的电子、制药等行业,逐步扩展到包装、印刷等各大领域。

江苏北人认为:机器视觉市场在发展,机器视觉技术在进步,在以不断满足客户发展需求的同时,最基本需求的满足也是不容忽视的。一直以来,我国的科技水平都处于不断发展的阶段,机器视觉技术作为科技发展的产物,为了更好的适应行业需求,也在不断的优化升级。纵观行业发展,国内机器视觉市场机遇与挑战并存,而行业技术的升级更显得尤为必要了。

在工业生产领域,工业机器人检测产品很大程度上依靠机器视觉,视觉的灵敏度将直接影响产品的检测速度和检测质量,因此设计一款质量过硬的视觉产品尤为重要,在设计过程中,设计人员会面临视觉定位、测量、检测和识别等诸多难题。

一、打光的稳定性

工业视觉应用一般分成四大类:定位、测量、检测和识别,其中测量对光照的稳定性要求最高,因为光照只要发生10-20%的变化,测量结果将可能偏差出1-2个像素,这不是软件的问题,这是光照变化,导致了图像上边缘位置发生了变化,即使再厉害的软件也解决不了问题,必须从系统设计的角度,排除环境光的干扰,同时要保证主动照明光源的发光稳定性。当然通过硬件相机分辨率的提升也是提高精度,抗环境干扰的一种办法了。比如之前的相机对应物空间尺寸是1个像素10um,而通过提升分辨率后变成1个像素5um,精度近似可以认为提升1倍,对环境的干扰自然增强了。

二、工件位置的不一致性

一般做测量的项目,无论是离线检测,还是在线检测,只要是全自动化的检测设备,首先做的第一步工作都是要能找到待测目标物。每次待测目标物出现在拍摄视场中时,要能精确知道待测目标物在哪里,即使你使用一些机械夹具等,也不能特别高精度保证待测目标物每次都出现在同一位置的,这就需要用到定位功能,如果定位不准确,可能测量工具出现的位置就不准确,测量结果有时会有较大偏差。

三、标定

一般在高精度测量时需要做以下几个标定:第一,光学畸变标定(如果您不是用的软件镜头,一般都必须标定);第二,投影畸变的标定,也就是因为您安装位置误差代表的图像畸变校正,三物像空间的标定,也就是具体算出每个像素对应物空间的尺寸。

不过目前的标定算法都是基于平面的标定,如果待测量的物理不是平面的,标定就会需要作一些特种算法来处理,通常的标定算法是解决不了的。

此外有些标定,因为不方面使用标定板,也必须设计特殊的标定方法,因此标定不一定能通过软件中已有的标定算法全部解决。

四、物体的运动速度

如果被测量的物体不是静止的,而是在运动状态,那么一定要考虑运动模糊对图像精度(模糊像素=物体运动速度*相机曝光时间),这也不是软件能够解决的。

五、软件的测量精度

在测量应用中软件的精度只能按照1/2—1/4个像素考虑,最好按照1/2,而不能向定位应用一样达到1/10-1/30个像素精度,因为测量应用中软件能够从图像上提取的特征点非常少。

机器视觉的运动速度和测量精度在整个产品中占有重要的位置,运动速度快慢以检测能力是成反比的,运动越快检测的质量效果相对较差,因此提高运动精度和检测细节很重要。而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

机器视觉系统的特点是提高生产的柔性和自动化程度。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。


您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|小黑屋|手机版|Archiver|中原工学院论坛 ( 豫ICP备11003946号 ) 百度统计

GMT+8, 2024-11-6 10:53 , Processed in 0.085202 second(s), 26 queries .

© 2010-2017 中原工学院团委 | 中工灵感论坛

请将您的想法告诉我们,帮助我们改进服务 请将您的想法告诉我们,帮助我们改进服务

快速回复 返回顶部 返回列表